
Introducing
data mesh

A future‑proof
approach to
managing
company‑wide
data at scale

much in the same way as DevOps. Data ownership and responsibility
fall to these domains. They become the foundations of a mesh, resulting
in a domain‑driven distributed architecture.

Data mesh also requires a shift in organizational culture. For many
organizations this means a move from a centralized decision‑making
around governance to a federated model, for example, built on
cross‑organizational trust.

Reconsidering how data is distributed
Enterprises are increasingly pursuing data democratization – making
trusted, quality data available to everyone in the organization for smart
decision‑making and, at the same time, increasing productivity and
efficiencies to achieve business outcomes rapidly. Data mesh delivers
this using several principles:

	■ Rethinking data as a product

	■ Leveraging a domain‑oriented self‑service design

	■ Supporting distributed domain‑specific data consumers

A data‑driven world requires
cultural and technical change
Enterprises understand the importance of being a
data‑driven organization. The benefits of intelligence
harvested from big data, include hyper‑personalization,
smart decision making, new business opportunities
and faster innovation. But it isn’t as easy as it sounds.

Many enterprises have invested in data platforms, especially large, centralized
data lakes, to achieve the data‑driven dream. Many, however, have been
disappointed by the results. Data lakes don’t scale well to meet changing
organizational and process requirements. In addition, there is often a lack
of alignment between the data lake creators and business teams, making
it difficult to get any tangible value. Data lakes also hold data in a host of
formats, which makes it a colossal task to make them available for usage,
while keeping the quality at a necessary level.

It is also important to note that becoming a data‑driven organization requires
cultural change in addition to technological implementation. Shortcomings
in organizational culture have been the main stumbling blocks to being
successful in the digital age.

Data mesh: the next data platform
Data promises to help solve these issues. Instead of one large body of data,
data mesh deconstructs it into distributed services built around a business
node or domain capabilities. Because there is no centralized data function,
data mesh supports decentralized ownership of domain‑related data.
Teams operate independently and autonomously as cross‑functional units,

2

3

Rethinking data as a product
Rethinking data as a product is about changing
organizational, architectural, and technological
concepts to get the most out of data, data teams
and data consumers.

Often data is seen as an asset – something valuable an organization
or part of an organization is not willing to part with. However, rethinking
data as a product creates more value by enabling data sharing and
data democratization. Often this approach makes a cultural change
necessary. In the data mesh approach, product teams own, control,
and are accountable for the data they create and share.

Data mesh creates an ecosystem of data products, as opposed to a
large, centralized data lake. The teams responsible for the data include the
producers, data scientists and engineers, business analysts, while other
users are seen as the customers for the data. With this cross‑functional
composition, teams include business and domain knowledge along with
engineering expertise to realize these data products.

Self‑service approach
For teams to autonomously work and take ownership of their data
products, they require a simple and efficient way of managing the
lifecycle of data and its provisioning. This is where self‑service
infrastructure as a platform comes in. It supports domain autonomy
and allows teams to create and disseminate valuable data by providing
dedicated and highly standardized domain environments. These are
ultimately the nodes of the data mesh. Again, this helps the domain’s
data ownership by underpinning it with secure and governed access.

3

Self‑service simplifies data access, breaks down silos, and enables the
scaled‑up sharing of live data. The infrastructure as a platform provides
dedicated, standardized domain environments with all necessary
components (such as storage or compute resources) a domain needs
to implement their use case. This ensures that domains can focus on
their business problem by not managing and maintaining the underlying
infrastructure. Domains are tasked with collecting, managing, and curating
data so that business intelligence applications can use it, for example.

Advantages of virtualization
Separating and abstracting the software from the underlying hardware
creates many possibilities, but two are especially important.

The first is that commodity equipment using more open technology can
replace the expensive proprietary hardware that these products used
in the past. The software then runs on that hardware in a virtualized
environment. That makes the costly, inflexible hardware component
cheaper and easier to support, leaving the real value in the software.

The second possibility is the management of that software.
Administrators can control that virtualized software centrally from
a dashboard, bringing the same centralized configuration and control
capabilities to the entire infrastructure. This also makes it a lot simpler
to enable automation and orchestration capabilities with proven IT
efficiency and cost optimization benefits.

Interoperability, standardization, and
governance
Maintaining data standards are imperative to data quality and trust.
Every domain provides standardized interfaces to access their data
which allows effective collaboration. The data output created can be

helpful to more than one domain. Interoperability, standardization, and
governance allows for efficient cross‑domain collaboration at all levels,
providing more significant innovation potential. It also allows trusted
data to be offered as products across the enterprise.

It is essential to understand that this model requires both energy and
commitment. With a decentralized model, it is crucial to establish
governance and common standards that ensure data products are
trusted and interoperable going forward. Moving from a monolith
to a microservices model requires cultural change. It involves
reorganization and changes in how teams and users work together.
Without these changes, you can end up with a fragmented data
system that doesn’t work.

The effort, however, is worth it. The deconstructed data model brings
with it greater business agility, scalability, and accelerated time to
market. It also eliminates process complexities.

4

Data mesh in depth
Data mesh is an architectural paradigm that
opens up analytical data at scale. It provides an
organizational view of how to structure data, data
platforms, and decentralized teams.

Instead of having a central data lake and central engineering teams, a
data mesh consists of many data nodes (domains) that interact with each
other, but operate independently. It describes a distributed domain‑driven
and self‑service platform approach where data is treated as a product.

The concept is built around domain‑driven data decomposition, where
domains have full ownership of their data. A team includes both deep
business knowledge, such as product managers or domain experts,
and technical expertise, such as data engineers and data scientists.
They are responsible for managing a domain together. This enables the
team to consume, process, and serve data that closely matches the
consumer requirements.

Domains are no longer dependent on engineering teams implementing
their requirements. Instead, they can produce and consume data sets
by themselves, while loosely coupled to other instances within the
organization by following governance standards. In addition, domains can
benefit from each other by consuming the data sets created as required.

Taking responsibility for business cases
Each domain is responsible for domain‑related use cases or is involved in
solving a specific business problem. This approach is designed to ensure
high data quality as the data processing will be done by the team that has

5

Data governance and infrastructure
In addition, data mesh has central components for data governance and
infrastructure. Both components act as self‑service platforms to efficiently
support product owner workflows and eradicate friction when connecting
to different parts of the infrastructure.

The governance component ensures that domain data is consumable
across the organization. The data catalog holding and providing meta
information about each domain will also need to be publicly accessible.
Global standards are key to ensure interoperability between domains.
Domain API specifications, schemas, member, permissions, and so forth
will need to be provided in a standardized format.

Furthermore, domains can deploy a standard set of compute and storage
resources on a self‑service basis from a central infrastructure component.
This reduces engineering overheads, while allowing the domain to focus on
the actual data processing. The standard set of resources should enable
domains to implement batch or streaming use cases and connect internal or
external data sources. Note that a very high degree of automation is required
here to create pre‑configured and ready‑to‑use domain environments.

Both self‑service components combined enable domains to act
independently and thus more efficiently. In addition, the generation
of new domains and use cases should also be frictionless.

the most knowledge about a use case. In contrast, data lakes, built
on a centralized approach, often exhibit issues because:

The producers have the capabilities but are not motivated to fulfill
requirements as their output doesn’t relate to any particular use case.

The consumers are motivated but are dependent on the output
of the centralized engineering team for data and data quality.

The engineering team is responsible for every implementation
but has no specific domain knowledge.

In a data mesh, these data and data quality drivers are all placed within
each domain.

Data mesh is a decentralized data platform which makes it easier for
organizations to create new use cases and enables faster delivery of
new features. This is made possible because it allows domain teams
to act independently by utilizing the self‑service platforms, with better
understanding of the use case requirements.

6

1
2
3

A governance framework
In the context of treating data as a product,
the governance of data in a decentralized data
architecture is crucial. The key focus areas of
data governance include availability, usability,
consistency, data integrity, and data security.

The fact that a data mesh is a distributed domain‑driven architecture and has
a self‑service platform design makes the data governance even more critical.

We have designed a data governance layer that provides the functionalities
needed for all key focus areas of governing data mentioned before, including a
data catalog backend (data discovery API) and a service (domain information
service) covering the whole domain schema evolution and lifecycle. This
includes five steps as follows:

Registration
Whenever a domain joins the data mesh, it needs to be initially
registered. In this registration process, all basic information about the
domain is stored: data format, data schema, processed data in terms
of data lineage, processing steps, and other data quality indicators
provided by the domain.

Domain schema
A domain can change over time regarding the data format or
schema, its behavior, or the internally used data sources. This means
that domain information in the data catalog will need to be kept up
to date. For this reason, each domain must provide an endpoint
where this information can be retrieved (domain schema API). In our
architectural design, the domain information service (DIS) pulls this
data by using the provisioned endpoint of a specific domain

1

2

7

to store schema evolution information, etc. The DIS implements the
logic for registering, updating, and querying schemas within the data
catalog. It represents the service layer for the data discovery API and
executes every request to the data catalog.

Data discovery
Domain data is made discoverable by the data discovery API,
which makes use of the DIS. The data discovery API is technically
a backend that exposes and manages the DIS endpoints and all
domain APIs. Here, domain APIs access is controlled and restricted
to secure its data from unauthorized access.

The addressability of the data products can be achieved by
following global standards for access to data via endpoints and
data schema descriptions.

Interoperability
Interoperability and standardization of communications are one of
the fundamental pillars for building distributed systems. It is vital to
establish global standards regarding data fields, and the metadata
of the domain data, such as data provenance and data lineage.
This increases the quality of the service level objective around the
truthfulness of the data. This information is governed globally by
the DIS and stored in the data catalog.

Security
Secure access to the data mesh and its individual domains is a
mandatory standard in every data architecture. In our architectural
design, we assume that the data is accessible via REST endpoints.
The access to these endpoints is managed and secured by using
API management services.

3

4

5

8

Rapid deployment with
infrastructure‑as‑a‑platform
The primary purpose of the infrastructure platform
is to enable domains to immediately start working
on their use cases by utilizing predefined automated
infrastructure deployments.

The infrastructure platform consists of two components. One is the
provisioning service handling requests for new domain environments.
The other is code repositories containing all the automation code (IaC) for
core components and domain environments, and several CI/CD pipelines
for automated deployments. The IaC code for domain environments is
designed to be suitable for every domain.

As a self‑service platform, the provisioning service can be used by domains
to request new environments. The following resource types should be
automatically deployed into a domain’s target environment:

	■ Secret/key management tool

	■ Workflow management tools

	■ Compute resources for large‑scale data processing (such as Spark)

	■ Runnable container/serverless application code

	■ Persistence backend, such as blob storage, SQL, or NoSQL solutions

	■ Stream processing tools

	■ Monitoring and alerting solutions

9

Where domains fit in
A domain is responsible for the data of a clearly definable problem area.
In doing so, it consumes data from one or more other domains or external
sources, processes it, and provides output data, which again is consumable
by other domains. The domain offers the schema for its output data. One
team should be in charge of both a domain and its data quality.

Furthermore, a well‑defined toolset belongs to every domain. With the help
of this, the domain can carry out all necessary work steps. This toolset
is provided by the infrastructure platform and can be requested by every
domain independently.

To avoid every domain data set being accessed differently, an abstraction
of the backend technology will be applied. Therefore, every domain must
implement a REST API – the domain API – to provide the requested data.
Once implemented, domains can register their API in the data discovery
API. The registration triggers a process that:

Stores the domain schema within the data catalog

Exposes the domain’s API endpoints centrally
in the data discovery API

This makes the domain schema discoverable and accessible to other
domains.

Other domains must utilize the API in question – otherwise, direct access
to the domain data will not be possible. This makes the backend technology
interchangeable and insignificant to other domains. The domain API
provides endpoints to retrieve the data (e.g. by date) and the current
schema. Create, update and delete endpoints should not necessarily be
provided. Cases where the schema changes over time are covered by the
DIS frequently querying the schema to update changes in the data catalog.

1
2

10

Open vs strict model
Two different approaches to managing domains are
possible in a data mesh: the open and strict models.

In brief, the open model gives domain teams as much freedom as possible.
The strict model supports domain teams in highly‑regulated environments
that cannot be changed. Both approaches have pros and cons, and of
course, hybrid solutions are feasible too. We discuss them in depth below.

Open model
In the open model, domains have no limitations in choosing their tools for
data processing and storing. In addition to the standard toolset deployed
by the infrastructure platform, further resources of every type can be added
by the team by customizing the infrastructure code.

But more importantly, storing and publishing output data is fully managed
by the domain itself. There is no central instance for storing the output
data in a predefined backend technology. Instead, the domain can decide
to use a blob container, SQL database, document store, etc. They can
choose between structure and naming conventions and only need to
make sure to expose their domain API. They have full ownership and
responsibility to ensure consistency between the exposed API and the
actual implementation.

This approach requires reliable and responsible domain teams to avoid
inconsistencies and data quality. It gives domains more freedom, reduces
implementation and automation effort within the platform team, and only
works in organizations with senior‑level domain teams. Because of the flexible
approach, it is suited to business users adopting big data and DataOps.

11

Strict model
The strict model predefines the whole domain environment without any
possibility of changing it. Domains have no access to their infrastructure
code, so they must stick to the standard set of resources. Furthermore,
their persistence layer is under central management.

With this approach, there is an area for each domain with strict
regulations and policies on where and how to store the data. Also, their
exposed domain API is regulated and controlled by a central validation
process. This ensures that domain API and implementation will always
be congruent.

This strict model requires a lot of implementation and automation effort
within the platform team and presupposes a very sophisticated data
mesh platform. On the other hand, it ensures high data quality and
consistency by design. This highly developed model is targeted towards
research institutions and advanced big data and analytics users.

Going down the data mesh route
Data is increasingly distributed in all enterprises. Now is a good time
for any enterprise that has moved to the cloud and is deploying
microservices to think data mesh. The concept allows for easier, more
efficient, small domain name components that enhance the user
experience and are key to a data‑driven organization.

12

Data mesh results
speak for themselves
Data mesh is a burgeoning paradigm in data
architecture that enables enterprises to take control
of large data and improve business outcomes.

By 2025, IDC maintains global data will grow 61% to 175 zettabytes 2025.1
The collection, integration, and governance of this data to gain valuable
business insight is increasingly complex.

For enterprises that require flexible access to their data to accelerate time
to market, data mesh’s democratized approach to data management
provides an ideal solution. The direct benefits for enterprises adopting
this model include:

	■ Establishing global data governance guidelines that encourage teams to
produce and deliver high‑quality data in a standardized and reliable format

	■ Eliminating the challenges of data availability, making discoverability
and accessibility easier in a secure and interoperable environment

	■ Increasing agility with decentralized data operations and a self‑service
infrastructure

	■ Allowing teams to operate in a more agile and independent way
to reduce time‑to‑market and deliver new data products faster

13

Why Orange?

Ready to adopt a new way of managing data?
For enterprises working with large, diverse, and often dynamic data sets and wanting to sell up rapidly or are worried their current data infrastructure is slowing
down innovation, data mesh is the ideal model. It provides a sustainable way for you to harvest business value from your growing amounts of data.

Here at Orange Business Services, we can help you establish, run and manage your data mesh solutions if required.

We provide a business strategy evaluation to assess your maturity and suitability for data mesh.

We can design, architect and develop a data mesh based on your unique business needs. We can approach this via a co‑innovation model, enabling
you to be self‑sufficient in development in the future.

We provide a managed service to run and manage enterprise data mesh solutions.

Adopting data mesh requires cultural change. We can help you drive cultural change in the workplace, and help you reach your goal of being
a data‑driven company.

Copyright © Orange Business Services 2021. All rights reserved. Orange Business Services is a trading name of the Orange Group and
is a trademark of Orange Brand Services Limited. Product information, including specifications, is subject to change without prior notice.

Sources:
1. IDC Data Age 2025 whitepaper

Orange Business Consulting & Innovation
www.orange-business.com/en/products/consulting-services-translate-business-benefits-digital-technologies

To find out how Orange Business Services can help you to empower your users and create
a decentralized data mesh architecture that fits your specific business needs, contact us at:

Head Innovation & Business Consulting
philipp.ringgenberg@orange.com

Orange Business Services
Philipp Ringgenberg

mailto:sales%40unbelievable-machine.com?subject=
http://www.unbelievable-machine.com

	Introduction
	Approach 1
	Approach 2
	Architecture 1
	Architecture 2
	Governance 1
	Governance 2
	Platform 1
	Platform 2
	Models 1
	Models 2
	Results
	Why Orange

	Next 39:
	Introduction:
	Section 1:
	Section 2:
	Section 3:
	Section 16:
	Contact:
	Contact 5:
	Contact 26:
	Previous 26:
	Next 26:
	Introduction 2:
	Section 4:
	Section 5:
	Section 6:
	Section 17:
	Contact 2:
	Contact 6:
	Contact 27:
	Previous 27:
	Next 27:
	Introduction 3:
	Section 7:
	Section 8:
	Section 9:
	Section 18:
	Contact 3:
	Contact 7:
	Contact 30:
	Previous 28:
	Next 28:
	Introduction 4:
	Section 10:
	Section 11:
	Section 12:
	Section 19:
	Contact 4:
	Contact 8:
	Contact 31:
	Previous 29:
	Next 29:
	Introduction 5:
	Section 13:
	Section 14:
	Section 15:
	Section 20:
	Contact 9:
	Contact 10:
	Contact 32:
	Previous 30:
	Next 30:
	Introduction 6:
	Section 21:
	Section 22:
	Section 23:
	Section 24:
	Contact 11:
	Contact 12:
	Contact 33:
	Previous 31:
	Next 31:
	Introduction 7:
	Section 25:
	Section 26:
	Section 27:
	Section 28:
	Contact 13:
	Contact 14:
	Contact 34:
	Previous 32:
	Next 32:
	Introduction 8:
	Section 29:
	Section 30:
	Section 31:
	Section 32:
	Contact 15:
	Contact 16:
	Contact 35:
	Previous 34:
	Next 35:
	Introduction 9:
	Section 33:
	Section 34:
	Section 35:
	Section 36:
	Contact 17:
	Contact 22:
	Contact 40:
	Previous 36:
	Next 36:
	Introduction 10:
	Section 37:
	Section 38:
	Section 39:
	Section 40:
	Contact 18:
	Contact 19:
	Contact 37:
	Previous 33:
	Next 33:
	Introduction 11:
	Section 41:
	Section 42:
	Section 43:
	Section 44:
	Contact 20:
	Contact 21:
	Contact 38:
	Previous 35:
	Next 34:
	Introduction 12:
	Section 45:
	Section 46:
	Section 47:
	Section 48:
	Contact 23:
	Contact 24:
	Contact 41:
	Previous 37:
	Next 38:
	Introduction 14:
	Section 53:
	Section 54:
	Section 55:
	Section 56:
	Contact 29:
	Contact 36:
	Contact 39:
	Previous 39:
	Home 9:

